skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Converse, Sarah J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The global spread of invasive species in aquatic ecosystems has prompted population control efforts to mitigate negative impacts on native species and ecosystem functions. Removal programs that optimally allocate removal effort across space and time offer promise for improving invader suppression or eradication, especially given the limited resources available to these programs. However, science‐based guidance to inform such programs remains limited. This study leverages two intensive fish removal programs for nonnative green sunfish (Lepomis cyanellus) in intermittent streams of the Bill Williams River basin in Arizona, USA, to explore alternative management strategies involving variable allocation of removal effort in time and space and compare static versus dynamic decision rules. We used Bayesian hierarchical modeling to estimate demographic parameters using existing removal data, with evidence that both removal programs led to at least a 0.39 probability of eradication. Simulated alternative management strategies revealed that population suppression, but not eradication, could be achieved with reduced effort and that dynamic management practices that respond to species abundance in real time can improve the efficiency of removal efforts. High removal frequency and program duration, including continued monitoring after zero fish were captured, contributed to successful population control. With management efforts struggling to keep pace with the rising spread and impacts of invasive species, this research demonstrates the utility of quantitative removal models to help improve invasive removal programs and robustly evaluate the success of population suppression and eradication. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Droughts are increasing in frequency and severity globally due to climate change, leading to changes in resource availability that may have cascading effects on animal ecology. Resource availability is a key driver of animal space use, which in turn influences interspecific interactions like intraguild competition. Understanding how climate‐induced changes in resource availability influence animal space use, and how species‐specific responses scale up to affect intraguild dynamics, is necessary for predicting broader community‐level responses to climatic changes.Although several studies have demonstrated the ecological impacts of drought, the behavioural responses of individuals that scale up to these broader‐scale effects are not well known, particularly among animals in top trophic levels like large carnivores. Furthermore, we currently lack understanding of how the impacts of climate variability on individual carnivore behaviour are linked to intraguild dynamics, in part because multi‐species datasets collected at timescales relevant to climatic changes are rare.Using 11 years of GPS data from four sympatric large carnivore species in southern Africa—lions (Panthera leo), leopards (Panthera pardus), African wild dogs (Lycaon pictus) and cheetahs (Acinonyx jubatus)—spanning 4 severe drought events, we test whether drought conditions impact (1) large carnivore space use, (2) broad‐scale intraguild spatial overlap and (3) fine‐scale intraguild interactions.Drought conditions expanded space use across species, with carnivores increasing their monthly home range sizes by 35% (wild dogs) to 66% (leopards). Drought conditions increased the amount of spatial overlap between lions and subordinate felids (cheetahs and leopards) by up to 119%, but only lion‐cheetah encounter rates were affected by these changes, declining in response to drought.Our findings reveal that drought has a clear signature on the space use of multiple sympatric large carnivore species, which can alter spatiotemporal partitioning between competing species. Our study thereby illuminates the links between environmental change, animal behaviour and intraguild dynamics. While fine‐scale avoidance strategies may facilitate intraguild coexistence during periodic droughts, large carnivore conservation may require considerable expansion of protected areas or revised human‐carnivore coexistence strategies to accommodate the likely long‐term increased space demands of large carnivores under projected increases in drought intensity. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Conservation translocations, intentional movements of species to protect against extinction, have become widespread in recent decades and are projected to increase further as biodiversity loss continues worldwide. The literature abounds with analyses to inform translocations and assess whether they are successful, but the fundamental question of whether they should be initiated at all is rarely addressed formally. We used decision analysis to assess northern leopard frog reintroduction in northern Idaho, with success defined as a population that persists for at least 50 years. The Idaho Department of Fish and Game was the decision maker (i.e., the agency that will use this assessment to inform their decisions). Stakeholders from government, indigenous groups, academia, land management agencies, and conservation organizations also participated. We built an age-structured population model to predict how management alternatives would affect probability of success. In the model, we explicitly represented epistemic uncertainty around a success criterion (probability of persistence) characterized by aleatory uncertainty. For the leading alternative, the mean probability of persistence was 40%. The distribution of the modelling results was bimodal, with most parameter combinations resulting in either very low (<5%) or relatively high (>95%) probabilities of success. Along with other considerations, including cost, the Idaho Department of Fish and Game will use this assessment to inform a decision regarding reintroduction of northern leopard frogs. Conservation translocations may benefit greatly from more widespread use of decision analysis to counter the complexity and uncertainty inherent in these decisions. History: This paper has been accepted for the Decision Analysis Special Issue on Further Environmental Sustainability. Funding: This work was supported by the Wilder Institute/Calgary Zoo, the U.S. Fish and Wildlife Service [Grant F18AS00095], the NSF Idaho EPSCoR Program and the National Science Foundation [Grant OIA-1757324], and the Hunt Family Foundation. Supplemental Material: The online appendix is available at https://doi.org/10.1287/deca.2023.0472 . 
    more » « less